Abstract

Stable porous TiO2 photocatalysts, with higher photocatalytic activity than Degussa P25, were synthesized via a hydrothermal process using cetyltrimethylammonium bromide as the template, followed by a posttreatment in the presence of ethylenediamine. The photocatalysts were characterized by X-ray diffraction, Raman spectroscopy, N2 adsorption−desorption, transmission electron microscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, and UV−vis diffuse reflectance spectra. The posttreatment considerably increases the thermal stability of the porous framework and inhibits the undesirable grain growth and phase transformation during calcination. The prepared TiO2 photocatalysts have large surface areas of about 205 and 117 m2/g even after calcination at 700 and 800 °C, respectively. The formation mechanism of the stable porous titania was proposed. The high crystallinity, large specific surface area, and heterojunction microstructure between anatase and brookite may be responsible for the hig...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call