Abstract

The (1-x)SrZrO3-xLa2Ce2O7(x = 0, SZ; x = 0.3, S7L3; x = 0.5, S5L5; x = 0.7, S3L7; x = 1, LC) composite powders were synthesized by a coprecipitation-calcination method. The composite bulks were fabricated by pressureless sintering at 1600 °C for 6 h. The X-ray diffraction (XRD) results indicated that the SZ-LC composite powders and bulks were comprised of the SZ and/or LC phase. The S7L3 and S5L5 bulks showed higher microhardness both in the as-sintered state and after heat-treatment at 1450 °C for different times. Their thermal expansion coefficients (TECs) revealed a positive effect on the phase transitions of the SZ-LC bulks. The composite bulks showed good phase stability from room-temperature to 1400 °C, determined by thermal analysis apparatus (DSC) and TEC analyses. The S5L5 bulk had very low thermal conductivity (0.97 W m−1 K−1, 1200 °C) compared with SZ and 8 wt% Y2O3-stabilized ZrO2 (8YSZ) over the same temperature range. Therefore, the S5L5 composite ceramics is considered to be a potential material for thermal barrier coating applications at higher temperatures than 8YSZ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.