Abstract

The aim of this study was to prepare and evaluate Eudragit-based microprecipitated bulk powder (MBP) formulations to enhance the oral bioavailability of sorafenib. Cationic Eudragit E PO and anionic Eudragit S100 were selected for MBP preparation. Ursodeoxycholic acid (UDCA)-incorporated MBP was also prepared to study the synergistic effect of UDCA in enhancing the bioavailability of sorafenib. Sorafenib-loaded MBPs were successfully prepared by a pH-controlled precipitation method using an aqueous antisolvent. Submicron-sized particles of MBPs were observed by scanning electron microscopy, and the amorphous form of sorafenib in MBPs was confirmed by powder X-ray diffraction. MBPs of cationic and anionic Eudragits showed different in vitro dissolution and pharmacokinetic profiles in rats. Sorafenib in Eudragit E PO-based MBP (E PO-MBP) was rapidly dissolved at low pH conditions (pH 1.2 and 4.0), but was precipitated again at pH 4.0 within 4h. Dissolution of sorafenib from Eudragit S100-based MBP (S100-MBP) was high at pH 7.4 and did not precipitate for up to 4h. After oral administration to rats, all MBPs, compared with powder, improved the oral absorption of sorafenib, with S100-MBP showing 1.5-fold higher relative oral bioavailability than E PO-MBP. Moreover, incorporation of UDCA in S100-MBP (S100-UDCA-MBP) further increased the Cmax and oral bioavailability of sorafenib, although the dissolution was not significantly different from that of S100-MBP. Taken together, Eudragit-based MBP formulations could be a promising strategy for enhancing the oral bioavailability of sorafenib.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call