Abstract

The magnetic hydrogels were successfully fabricated by chemically cross-linking of gelatin hydrogels and Fe 3O 4 nanoparticles (ca. 40–60 nm) through genipin (GP) as cross-linking agent. The cross-sectional SEM observation demonstrates that the Fe 3O 4 nanoparticles were fairly uniformly distributed in the gelatin matrix. Moreover, in vitro release data reveal that drug release profile of the resulting hydrogels is controllable by switching on or off mode of a given magnetic field. While applying magnetic fields to the magnetic hydrogels, the release rate of vitamin B 12 of the hydrogels was considerably decreased as compared with those when the field was turned off, suggesting a close configuration of the hydrogels as a result of the aggregation of Fe 3O 4 nanoparticles. Based on this on-&-off mechanism, the smart magnetic hydrogels based on the gelatin-ferrite hybrid composites can be potentially developed for application in novel drug delivery systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.