Abstract

Aerogels are well suited as transparent insulation materials in solar architecture and collector systems. Their nanoporous structure provides a high solar transmittance and a low thermal conductivity, generally below 0.02 W m−1 K−1. Transparent aerogels with densities above 80 kgm−3 can easily be prepared at room temperature via a one-step sol-gel process with subsequent supercritical drying. Separating hydrolysis and condensation via a two-step method allows the preparation of transparent ultra-low density SiO2-aerogels. To optimize the optical properties, characterized by the scattering coefficient of the gels, we have investigated the influence of preparation parameters, such as pH-value of the sol-gel starting solution and macroscopic density, on the gel structure. To determine the nanostructure we performed spectral light scattering as well as small angle X-ray scattering (SAXS) measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.