Abstract

Silver clad Bi-2223 tapes with consistently high critical current densities of over 30,000 A/cm2 at 77 K and zero field were prepared by powder-in-tube (PIT) technique. Powder XRD, electron microscopy, a.c. susceptibility and critical current measurements were used to study the phase assemblage, microstructure and transport properties of these tapes at various stages of processing. The precursor powder for PIT process was prepared by a sol-gel route by acrylate method using freshly prepared nitrates of Bi, Pb, Sr, Ca and Cu. The carbon content in the powder was minimized by subjecting it under dynamic vacuum calcination followed by heating in free flow of oxygen for long durations with intermittent grindings. The choice of initial stoichiometry, high reactivity of the precursor, effective removal of carbon, choice of phase assemblage at the filling stage and the multistage thermomechanical processing at optimized conditions were found to be responsible for the high critical current density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call