Abstract

Films consisting of Eu3+ β-diketonate complexes were deposited onto glassy substrates by means of the spin- and dip-coating techniques, using different ion/ligand ratios. Absorption spectroscopy in the infrared region revealed the typical stretching bands of the SiOSi and SiOH bonds of the inorganic matrix as well as bands relative to the CO and CH symmetric vibration of β-diketone (dibenzoylmethane). The films displayed UV-visible absorption band at 350nm, attributed to the organic ligand. Luminescence properties were studied by photoluminescence spectroscopy. Upon ligand excitation, the emission spectra exhibited the characteristic bands of the Eu3+ ion corresponding to the transition from the excited state 5D0 to the ground state 7FJ. Scanning electron microscopy confirmed the formation of a film with average thickness ranging from 80 to 100nm. The sol–gel process and the deposition techniques resulted in the effective formation of nanofilms, which opens up perspectives for their application in photonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call