Abstract

Silica-Enoxil nanobiocomposites with 13 %w of Enoxil were prepared either by mechanical mixing of corresponding powders or by sorptive modification of fumed silica powder with aqueous Enoxil solution under fluidized bed conditions. The interaction of fumed silica with Enoxil and the properties of silica-Enoxil composites have been investigated using IR spectroscopy, thermogravimetric analysis, and quantum chemistry methods, as well as by means of water absorption, Enoxil desorption, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) test. It has been shown that the main biomolecules of Enoxil composition interact with silica involving their hydroxyl groups and surface silanol groups. The water absorption of silica-Enoxil nanocomposites was found to be less than that for the individual components. The Enoxil biomolecules are readily and completely desorbed from silica surface into water, and the antioxidant activity of desorbed Enoxil is practically the same as that for the just dissolved one.

Highlights

  • Much attention of researchers and food manufacturers is focused on a comprehensive study of bioactive compounds of plant origin, in particular, natural polyphenols [1]

  • The physical water content was determined by dividing the area of the split peak centered at 100 °С into the total area of peaks obtained by Gauss multipeak fitting of differential thermogravimetric (DTG) curve

  • The spectrum of pristine silica shows the narrow absorption band at 3750 cm−1, the broad band at 2560–3672 cm−1, and the distinct band at 1633 cm−1 assigned to O–H stretching vibrations in free silanol groups, O–H stretching vibrations of water molecules adsorbed at silica surface, and O–H deformation vibrations in water molecules, respectively [14]

Read more

Summary

Introduction

Much attention of researchers and food manufacturers is focused on a comprehensive study of bioactive compounds of plant origin, in particular, natural polyphenols [1]. Plant polyphenols are multifunctional compounds capable to act as the reducing agents, hydrogen-donating antioxidants, and singlet oxygen quenchers. One of the most attractive properties of polyphenols, from the viewpoint of the advantages for the human health, is their ability to exhibit the antioxidant properties. Antioxidants, i.e., the compounds capable of inhibiting or preventing the substrate oxidation [2, 3], are widely used in medicine, cosmetology, and food industry. Fruits, and vegetables are known to be the sources of polyphenols. Grape seeds contain the polyphenol compounds in large quantity.

Objectives
Methods
Results

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.