Abstract

Self-crosslinking fluorinated polyacrylate latexes based on butyl acrylate (BA), fluorine monomer octafluoropentyl methacrylate (OFPMA), self-crosslinking functional monomers acrylic acid (AA) and 2-hydroxyethyl acrylate (HEA) were synthesized by a monomer-starved seeded semi-continuous emulsion polymerization process. The latexes and their corresponding films were characterized by laser particle size analyser, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), contact angle goniometer, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Results indicated that the particle size of the latexes and the gel content of the films were both independent of the amount of OFPMA employed. On the other hand, the particle size of the latexes decreased and the gel content of the films increased with the incorporation of AA and HEA as expected. Glass transition temperature (Tg) and the thermal stability of the copolymer were both improved gradually as OFPMA content increased. XPS, AFM and water contact angle measurement indicated that the fluoroalkyl groups had a tendency to enrich on the surface of the films. However, this enrichment of fluorine on the film surface was reduced after the introduction of self-crosslinking functional monomers into the system. Finally, the adhesive property of the latexes was evaluated for application as a pressure sensitive adhesive (PSA).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.