Abstract

AbstractIn this article, a Haake torque rheometer equipped with an internal mixer is used to study the influence of the amount of sodium montmorillonite (Na+‐MMT) and organically modified MMT (O‐MMT) on the characteristics of rigid poly (vinyl chloride) (PVC)/Na+‐MMT and PVC/O‐MMT nanocomposites, respectively. It is observed that the fusion time and temperature of the rigid PVC/Na+‐MMT nanocomposites are decreased with increasing the amount of Na+‐MMT. On the contrast, the fusion time and temperature of the rigid PVC/O‐MMT nanocomposites are increased with increasing the amount of O‐MMT. Results of X‐ray diffraction (XRD) and transmission electron microscope (TEM) indicate that MMT is partially encapsulated and intercalated in the rigid PVC/Na+‐MMT nanocomposites. However, results of XRD and TEM show MMT is partially intercalated and exfoliated in the rigid PVC/O‐MMT nanocomposites. Tensile strength, yield strength, and elongation at break of the rigid PVC/MMT (including PVC/Na+‐MMT and PVC/O‐MMT) nanocomposites were improved simultaneously with adding 1–3 wt % Na+‐MMT or O‐MMT with respect to those of pristine PVC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1465–1474, 2005

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.