Abstract

In recent thirty years, protein-based nanoparticles have attracted considerable attention, and they are being widely used in the food, pharmaceutical, and biomedical fields. Wheat glutenin, an important natural vegetable protein, has been demonstrated to be nutritive and biocompatible. This study aimed to develop a new type of redox-sensitive protein nanoparticles. The glutenin nanoparticles (GNPs) were synthesized with glutenin concentrations (0.082%, 0.5%, and 0.83%) through the adoption of an antisolvent titration technique and the use of hydrogen peroxide (H2O2) oxidative cross-linking for different periods. At a glutenin concentration of 0.83% and oxidation time of 20 h, the obtained GNPs were spherical in shape and approximately 100–300 nm in size, as measured by transmission electron microscopy and dynamic light scattering. The formation of disulfide was confirmed by Raman spectroscopy. The turbidity values of the GNP suspensions were decreased by half after the addition of β-mercaptoethanol. Nile blue A, a model hydrophilic substance, was entrapped in the GNPs with 77.67% loading efficiency. The newly developed GNPs can be used as redox-responsive carriers for delivering hydrophilic active substances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.