Abstract

Quinoa starch nanoparticles (QSNPs) prepared by nanoprecipitation method under the optimal condition was developed as a carrier for quercetin. The QSNPs prepared under the optimal condition (90 DMSO/H2O ratio, 10 ethanol/solvent ratio, and ultrasonic oscillation dispersion mode) had the smallest particle size and polymer dispersity index through full factorial design. Compared with maize starch nanoparticles (MSNPs), QSNPs exhibited a smaller particle size of 166.25 nm and a higher loading capacity of 26.62%. Starch nanoparticles (SNPs) interacted with quercetin through hydrogen bonding. V-type crystal structures of SNPs were disappeared and their crystallinity increased after loading with quercetin. QSNPs was more effective in protecting and prolonging quercetin bioactivity because of their small particle sizes and high loading capacities. This study will be useful for preparing starch-based carrier used to load sensitive bioactive compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call