Abstract

P(PEGMA-r-MMA) amphiphilic copolymer with Mn of 66,500g/mol and Mw of 34,200g/mol was successfully synthesized via free radical polymerization. And polyvinylidene fluoride (PVDF)-P(PEGMA-r-MMA) blend membranes were fabricated from water and ethanol coagulants via simplified blend method by directly blending PVDF and P(PEGMA-r-MMA) amphiphilic copolymer solution (including the reaction mixture) to form casting solution. The formation of the supramolecular aggregates in PVDF solution containing the copolymer were confirmed by dynamic light scattering and scanning electron microscopy. This contributed to the micro-structure adjustment of PVDF solution and resulted in its decreasing surface tension, accelerating precipitation rate and increasing viscosity with trivial strain thinning behavior. Furthermore, the effects of the variations in dopant contents and coagulant compositions on the performances of those blend membranes were investigated. All PVDF-P(PEGMA-r-MMA) blend membranes possessed narrow distribution mean effective pore size (μ), molecular weight cut off (MWCO), improved recovery water flux after filtration experiments of bovine serum albumin and tuned configurations. Compared with the instantaneous demixing process in water coagulant, the delayed demixing process in ethanol favored the pore-forming and surface segregated of the polar head group of the copolymer, which induced the increasing μ, MWCO, tunable morphologies and hydrophilicity improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.