Abstract
This study aimed to improve the pore size, porosity, and hydrophobicity of polyvinylidene fluoride (PVDF) membranes for desalination by vacuum membrane distillation (VMD). New membranes were prepared via etching PVDF/calcium carbonate (CaCO3) composite membranes using hydrochloric acid (HCl), depending on the chemical reaction of CaCO3 and HCl. Etched membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), contact angle (CA), atomic force microscope (AFM), and scanning electron microscopy (SEM). The results showed that CaCO3 of composite membranes was completely reacted by 1.5 mol/L HCl after composite membranes had been etched 90 min. The crystallinity of etched membranes was the same as that of PVDF/CaCO3 composite membranes, and no new functional groups appeared in etched membranes, which indicated that etched membranes had good chemical stability. The surface roughness increased and led to the increase of contact angle, which means the hydrophobicity of etched membranes was enhanced. As a result, the increment of permeation flux had been improved in a VMD process. It was found that the maximum flux of etched membrane was enhanced and up to 1.65 times of composite membrane when the concentration of sodium chloride (NaCl) solution was 5.0 wt%, and the maximum flux reached up to 30.9 kg m-2 h-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Environmental Science and Pollution Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.