Abstract

PtRu/C (100% C) and PtRu/C-CeO2, PtRu/C-La2O3, PtRu/C-Nd2O3, and PtRu/C-Er2O3 (85% C and 15% rare earth) electrocatalysts were prepared in a single step by an alcohol-reduction process using H2PtCl6 6H2O and RuCl3 xH2O as metal sources, ethylene glycol as solvent and reducing agent, Vulcan XC72 and rare earth (RE) as support. The electrocatalysts were characterized by energy dispersive X-ray, X-ray diffraction, and transmission electron microscopy. The performance for ethanol oxidation was investigated by cyclic voltammetry and chronoamperommetry at room temperature, and studies on the direct ethanol fuel cell were carried at 100 °C. The Pt:Ru atomic ratios were similar to the nominal used in preparation, and the average particle sizes were in the range of 2.0–3.0 nm. All PtRu/C-RE electrocatalysts showed an increase of performance for ethanol oxidation at room temperature and also on a single direct ethanol fuel cell tests in relation to PtRu/C electrocatalyst at 100 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call