Abstract
With thin film solar cell applications, chalcopyrite semiconductors present enormous potential for usage as an absorber layer. In today's electronics sector, wide band gap semiconductors have extreme demand for applications such as high-power, high-frequency, challenging devices that are resistant to high temperatures, optoelectronic devices, and short-wavelength light-emitting devices. The undoped and tin-doped CGS thin films are the subject of the current investigation. Pure and Tin (Sn) doped CGS thin films were produced on a glass substrate using a low-cost chemical spray pyrolysis technique in a nitrogen atmosphere. Spray pyrolysis is a flexible and efficient method for thin-film deposition. The process parameters, such as the nozzle distance, spray time, spray rate, and temperature, have a significant impact on the films' quality and characteristics. Fundamental characterization techniques, including XRD analysis, Micro Raman analysis, EDAX, UV-VIS-NIR spectroscopy, and Scanning Electron Microscopy (SEM), were used to examine the generated pristine and Sn-doped CGS thin films. The XRD patterns showed that the pristine and Sn-doped CGS thin films exhibit a tetragonal phase and there is a decrease in the crystallite size with increasing dopant concentration. SEM studies revealed that there is a change in the grain size and surface morphology of the film with increasing Sn doping concentration. The presence of copper (Cu), gallium (Ga), sulfur (S), and Sn was further confirmed by studying the EDAX spectrum. SEM results indicate that the surface morphology of the CGS films is modified by Sn doping. Further increasing the dopant percentage caused deformation and fragmentation of the sample. A comparison of the Raman spectra for pristine and Sn-doped CGS revealed that there is some substantial change in the layer composition after adding the dopant. Compared to the pristine CGS, the peak positions of CGS (1 wt %) and CGS (3 wt %) are not shifted but there is a significant change in the relative peak intensities and formation of an additional peak The Sn-doped CuGaS2 thin films had optical band gaps of 2.47 eV (0.0 wt% Sn-doped), 2.33 eV (1 wt% Sn-doped), and 2.58 eV (3 wt% Sn-doped). From this study, we can say that the 1 wt% Sn doped CGS sample is the best for solar cell application. The XRD results indicated that the Sn dopant addition in the CuGaS2 lattice site does not affect the symmetry of the material. Enhancement of absorption is done by the Sn dopant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.