Abstract

The current study focuses on the preparation and characterization of potato starch-based biocomposite films by reinforcing them with banana fiber. The banana fibers were modified using ultrasonication and cellulase enzyme, individually and in combination. Both native and modified banana fibers underwent physical, morphological, FTIR, and crystallinity analyses. The resulting biocomposite films, created by incorporating native and treated banana fibers, were then evaluated for their mechanical, thermal, barrier, and biodegradable properties. The findings indicated that combining ultrasound with enzyme treatment of banana fibers in the potato starch matrix led to a substantial reduction in water-sorption and water-vapor permeability (0.156 g mm m−2 h−1 kPa−1) of the packaging films. Additionally, the mechanical properties (5.02 MPa-Tensile strength, 4.27 MPa-Sealability) of the films significantly improved with the inclusion of modified banana fibers. FTIR analysis revealed similar spectra for all modified samples, along with enhanced crystallinity. Moreover, the thermal stability of the developed films was enhanced by the incorporation of modified banana fibers. Scanning electron microscopy showed that the modified fibers exhibited smooth surfaces and an even distribution of spaces compared with the native fibers. The biocomposite films demonstrated biodegradation within 42 days. Furthermore, the packaging application was tested with grapes, which showed that the films could maintain storability for up to 8 days. Overall, these results suggest a promising eco-friendly method for producing packaging films with biocompatible, biodegradable, and non-toxic properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call