Abstract

A type of antigraffiti polyurethane clearcoat was prepared and characterized. Polymethylsiloxane grafted by fluorocarbon side chains (PSF) was first synthesized through hydrosilylation of polymethylhydrosiloxane with dodecafluoroheptyl acrylate. Hydroxyl fluoroacrylate resins with different hydroxyl contents were synthesized via free radical-initiated solution polymerization and further applied to prepare polyurethane clearcoats. The synthesized polymers were structurally characterized by using Fourier transform infrared and 1H nuclear magnetic resonance. The prepared polyurethane clearcoats underwent contact angle measurement, dynamic thermal mechanical analysis, nanoscratch experiments, and atomic force microscopy. The results reveal that low surface energy, high crosslink density, low coefficient of friction, and low roughness were jointly beneficial to antigraffiti properties. Antigraffiti testing was carried out on the clearcoat with 8.0 wt% PSF and 2.0 wt% active silicone fluid, and this clearcoat showed high resistance to acrylic spray paint, permanent markers, and other graffiti materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call