Abstract

Myocardial infarction of cardiomyocytes is a leading cause of heart failure (HF) worldwide. Since heart has very limited regeneration capacity, cardiac tissue engineering (TE) to produce a bioactive scaffold is considered. In this study, a series of polyurethane solutions (5–7%wt) in aqueous acetic acid were prepared using electrospinning. A variety of Polyurethane (PU)/Chitosan (Cs)/carbon nanotubes (CNT) composite nanofibrous scaffolds with random and aligned orientation were fabricated to structurally mimic the extracellular matrix (ECM). Electrospun nanofibers were then characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), water contact angle, degradation studies, tensile tests, electrical resistance measurement and cell viability assay. The biocompatibility of electrospun random and aligned nanofibrous scaffolds with H9C2 Cells was confirmed. The results revealed that fabricated PU/Cs/CNT composite nanofibrous scaffolds were electro-conductive and aligned nanofibers could be considered as promising scaffolds with nano-scale features for regeneration of infarcted myocardium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.