Abstract

In this study, nano silver-doped activated carbon (Ag/C) acted as an inorganic additive and was blended with a polysulfone (PSF) matrix in a tetrahydrofuran (THF) solution, thereby forming nano silver- doped activated carbon/polysulfone (Ag/C/PSF) composites. Subsequently, the silver content and characterization of the Ag/C were identified using energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The FTIR, XRD, EDS and SEM were used to characterize the structure and morphology of the Ag/C/PSF composites. The FTIR spectra analysis revealed that adding a small volume of Ag/C in a PSF matrix did not substantially affect the functional groups of the matrix. The XRD results showed that the characteristic crystallization peaks of Ag/C/PSF (2θ = 26°) increased as the Ag/C content increased. The EDS results revealed that silver elements were inlaid into Ag/C/PSF composites, and the SEM results demonstrated strong interfacial interaction between the Ag/C particles and PSF matrix. The results of thermogravimetric analysis and differential scanning calorimetry appeared that adding Ag/C particles increased the thermal decomposition temperature and glass transition temperature of the Ag/C/PSF composites. From a stress–strain analysis, the added Ag/C particles enhanced the tensile strength of the PSF matrix. The results of contact-angle and atomic-force microscopy measuring showed that the hydrophobicity and surface roughness increased when Ag/C content increased. The antibacterial test results revealed that the Ag/C/PSF composites exhibited excellent antibacterial activity against both Staphylococcus aureus and Escherichia coli. In addition, the electrical conductivity measurements showed that volume resistivity of the Ag/C/PSF composites decreased with the amount of Ag/C increase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call