Abstract
Phase change material (PCM) stores latent heat energy, and poly(ethylene glycol) (Mw: 4000) (PEG 4000) is also a solid-liquid PCM. PEG and poly(lactic acid) (PLA) polymers are biodegradable. Essential oils are known as plant extracts with antimicrobial properties. In this study, daphne essential oil (DEO) obtained by the distillation method and PLA/PEG/DEO composite nanofibers were prepared by the electrospinning method with PLA, PEG 4000, and daphne (Laurus nobilis L.) essential oil in certain ratios (100/100/20, 100/120/20, and 100/150/20). DEO showed an antibacterial effect against Staphylococcus aureus and Escherichia coli bacteria. Thermal behaviors of the nanofibers were characterized by differential scanning calorimetry and thermogravimetric analysis. Morphological features were observed by scanning electronic microscopy (SEM), crystal behavior by X-ray diffraction analysis, and molecular structures were examined by Fourier transform infrared spectroscopy. Essential oil composition was determined by GC-MS. The thermal decomposition temperatures of the nanofibers were found between 250 and 276 °C, and the latent heat storage energies of nanofibers were 69.06, 86.76, and 96.39 J g-1 at temperatures 59.0 and 54.37 °C. High PCM added fiber was observed as 182 nm diameter with 3.264 μm diameter spheres. The produced nanofiber matrix has the potential to be used in applications such as medicine, textile, and hot food logistics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.