Abstract

To obtain a new type of biodegradable material with high toughness and strength used for fused deposition modeling (FDM) printing, a series of poly(butylene succinate) (PBS)-based polymer materials was prepared via blending with polylactide (PLA). The rheological, thermal, and mechanical properties as well as FDM printing performances of the blends, such as distortion, cross section, and the interlayer bond strength, were characterized. The results show that with increasing PLA content, the blends possess higher melt viscosity, larger tensile strength, and modulus, which are more suitable for FDM printing. Especially, when the content of PLA is more than 40%, distortion due to residual stress caused by volume shrinkage disappears during the printing process and thus products with good dimensional accuracy and pearl-like gloss are obtained. The results demonstrate that the blend compositions with moderate viscosity, low degree of crystallinity, and high modulus are more suitable for FDM printing. Compared with the low elongation upon breaking of commercially FDM-printed material, the PBS/PLA blend materials exhibit a typical ductile behavior with elongation of 90–300%. Therefore, besides biodegradability, the PBS/PLA blends present excellent mechanical properties and suitability as materials for FDM printing. In addition, our study is expected to provide methods for valuating the suitability of whether a thermoplastic polymer material is suitable for FDM printing or not.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.