Abstract

Phosphorus (P)-doped silicon nanocrystals (Si-NCs) embedded in SiC matrix were prepared using magnetron sputtering and rapid thermal annealing with heavily P-doped Czochralski silicon as the doping target. The microstructure and electrical properties of the Si-NC thin films were characterized using transmission electron microscope, Raman spectroscopy and Hall measurement. It was observed that the microstructure changed from geometrically isolated Si-NCs to network Si-NCs with the annealing temperatures from 800 to 1200°C. The evolution of microstructure led to the significant change of conductivity (10−6 - 101Scm−1) in the Si0.85C0.15 thin films that possessing a fixed phosphorus concentration. A percolation threshold of crystalline-silicon (c-Si) content (30–40%) was found for the considerable increase of conductivity, where the carrier concentration dominated it. It suggested that the network Si-NCs not only increased the carrier mobility, but also boosted the carrier concentration. In addition, for the Si0.85C0.15 thin film with c-Si content above percolation threshold, the activate energy of conductivity could be lower than 70meV and the work function lower than 4.10 eV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.