Abstract

Surface modification of liposomes is an effective way to maintain the physicochemical activity of encapsulated substances. A novel astaxanthin (Ast)-based vesicle carrier system, namely, phosphatidyl-agar oligosaccharide (Ptd-AOS) liposomes (Lip), was prepared to improve the structural stability and in vitro digestibility of astaxanthin. During the transphosphatidylation reaction of synthesizing Ptd-AOS from phosphatidylcholine (PC) and AOS with different degrees of polymerization, phosphatidyl galactose (Ptd-Gal) and phosphatidyl neoagarobiose (Ptd-NA2) showed higher yields (85 and 96%, respectively). In terms of morphology, modified liposomes exhibited smaller particle sizes and more uniform dispersion compared with PC-Ast-Lip. In addition, the astaxanthin in the modified liposomes showed enhanced stability during liposome characterization and in vitro digestion. The transformations of astaxanthin in the modified liposomes were distributed in the range of 57–74% compared with free astaxanthin (25%). These findings suggest that the modification of liposomes by Ptd-AOS has potential applications in the delivery of functional ingredients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.