Abstract

This study describes the development of mesostructured TiO2 photocatalysts modified with PO43- to improve its specific surface area and reduce the recombination rate of the electron—hole pairs. The mesoporous photocatalyst was successfully incorporated into a high specific surface area silica matrix by the hydrolysis reaction of tetraethyl orthosilicate (TEOS). Pluronic 123 and phosphoric acid were used as the directing agent for the structure of the mesoporous TiO2 and as a source of phosphorus, respectively. TiO2, P/TiO2, TiO2-SiO2 and P/TiO2-SiO2 materials were characterized by BET, XRD, TEM-EDS, FTIR and UV-vis DRS measurements. The photoactivity of TiO2-SiO2 nanocomposites containing 15 wt.% photocatalyst/silica was evaluated in the degradation reaction of anionic dyes with UV radiation. The proposed nanomaterials showed high potential for applications in the remediation of wastewater, being able to reuse in several cycles of reaction, maintaining its photoactivity and stability. The separation and recovery time of the material is reduced between cycles since no centrifugation or filtration processes are required after the photooxidation reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.