Abstract

In this study, polyhydroxybutyrate/poly(butyleneadipate‐co‐terephthalate) (PHB/PBAT) nanofibrous membranes were produced by electrospinning the blends of biodegradable PHB and PBAT. The antibacterial hydrophobic nanofiber membranes were obtained by grafting 1‐allylhydantoin and perfluorooctyl acrylate onto the PHB/PBAT membranes. The prepared nanofibrous membranes were chlorinated with chlorine bleach and characterized by scanning electron microscopy, Fourier transform infrared, and thermogravimetric analysis. The chlorinated nanofibrous membranes exhibited efficient antimicrobial activity against Escherichia coli O157:H7 (ATCC 43895) and Staphylococcus aureus (ATCC 6538) with 6.08 and 5.78 log reduction, respectively. The contact angle of this antibacterial membrane was 123.1° ± 1.9°. The treated membranes showed good stability and durability towards UV‐A light exposure and storage. Therefore, our designed antibacterial hydrophobic nanofibrous membranes may have great potential for use in food packaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call