Abstract

Two kinds of diblock copolymers containing glucose and phenylboronic acid moieties, respectively, poly (ethylene glycol)-b-poly (gluconamidoethyl methacrylate) (PEG-b-PGAMA) and poly (ethylene glycol)-b-poly (2-aminoethyl methacrylate-co-3-nitrophenyboronic acid methacrylate) (PEG-b-P(AMA-co-NPBMA)) were synthesized via atom transfer radical polymerization (ATRP) and post polymerization modification (PPM). Well-defined structure and narrow molecular weight distribution of the polymers were confirmed by proton Nuclear Magnetic Resonance (1H NMR) and Gel Permeation Chromatography (GPC). Based on the cross-linking between the diol groups of the glycopolymer and phenylboronic acid under physiological pH (7.4), complex micelles composed of PEG outer shell and boronate ester cross-linking core with a hydrodynamic diameter around 20nm were formed. Morphology, size and assembly behavior of the complex micelles were investigated by 1H NMR, transmission electron microscopy (TEM) and dynamic light scattering (DLS). The results showed the formation/cleavage of boronate ester linkage is reversible upon the variation of solution pH, the complex micelles displayed pH sentiveties of assembling/disassembling behavior. Above pH 7.4, stable spherical micelles can be formed, whereas pH less than 5.5, the micelles dissociated into unimers. Therefore, such pH-responsive micelles based on dynamic complexation of phenyl boronate bonds are expected to be applied to pH-responsive nanodrug carriers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.