Abstract

Novel photoluminescence (PL) composite nanofibers (NFs) consist of carbon qunatum dots (CQDs) and polyacrylonitrile blend with polyacrylic acid (PAN/PAA) were fabricated by the coelectrospinning process. The air-dried CQDs containing NFs were characterized by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), UV-visible spectroscopy, spectrofluorometer, and confocal microscopy. CQDs are familiar to emit blue, green and red color depending on the excitation energy. The PAN/PAA/CQDs NFs were found to be optically transparent and exhibited PL properties similar to CQDs. Therefore, blue, green and red color was observed under confocal microscope from the NFs membrane while the sample was excited by 405 nm, 488 nm and 543 nm lasers. The results indicated the well preserved quantum confinement properties of the CQDs inside the polymer matrix without aggregation or substantial quantum dots growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.