Abstract

An advanced SiO2–lignin hybrid material was obtained and tested as a novel poly(vinyl chloride) (PVC) filler. The processing of compounds of poly(vinyl chloride) in the form of a dry blend with silica–lignin hybrid material and, separately, with the two components from which that material was prepared, was performed in a Brabender mixing chamber. An analysis was made of processing (mass melt flow rate, MFR), thermal (thermogravimetric analysis, Congo red and Vicat softening temperature test) and tensile properties of the final PVC composites with fillers in a range of concentrations between 2.5 wt % and 10 wt %. Additionally, the effects of filler content on the fusion characteristics of PVC composites were investigated. The homogeneity of dispersion of the silica–lignin hybrid material in the PVC matrix was determined by optical microscopy and SEM. Finally, it should be noted that it is possible to obtain a PVC composite containing up to 10 wt % of silica–lignin filler using a melt processing method. The introduction of hybrid filler into the PVC matrix results in a homogeneous structure of the composites and positive processing and functional properties, especially thermal stability and Vicat softening temperature.

Highlights

  • Silica plays a very important role as an active polymer filler

  • The results indicate that both lignin and silica–lignin hybrid filler cause an increase in thermal stability compared with the pure

  • It is possible to obtain a composite with a poly(vinyl chloride) (PVC) matrix containing up to 10 wt % of silica–lignin filler by means of the melt processing method used

Read more

Summary

Introduction

The literature contains very interesting reports indicating the use of both pyrogenic and precipitated silica in the formation of modern polymer composites, e.g., natural rubber [1], polyurethane (PUR) [2], polyethylene (PE) [3], polypropylene (PP) [4], polystyrene (PS) [5], poly(vinyl chloride) (PVC) [6], polyhydroxyethylmethacrylate (pHEMA) [7], poly(methyl acrylate) (PMA) [8], poly(butylene terephthalate) (PBT) [9], acrylonitrile-butadiene elastomer (NBR) [10] or carboxylated acrylonitrile-butadiene elastomer (XNBR) [11], and epoxy resin [12]. Natural fiber reinforced polymer composites (NFC) are one of the groups of modern construction materials manufactured with a thermoset and thermoplastic matrix. For the manufacture of natural filler composites with thermoplastic matrix, high-volume polymers are commonly used, usually polyolefins (PE, PP) or PVC, and to a lesser extent PS, acrylonitrile butadiene styrene (ABS) or biodegradable polymers. The thermoplastic polymeric material used to produce the NFC may be in the form of original granules or recyclates [14,15]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call