Abstract

In the present study, modification of nanoparticles (NPs) was investigated to mitigate aggregation of SiO2 nanoparticles and improve the polymeric membrane's performance. For this purpose, the surface of SiO2 nanoparticles was activated with amine groups, and polymethacrylic acid (PMAA) was grafted on the surface of NPs by atom transfer radical polymerization. Modified NPs were characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) tests. Polyethersulfone (PES) membranes were fabricated with both SiO2 and SiO2‐g‐PMAA NPs via nonsolvent‐induced phase separation method. The fabricated membranes were characterized regarding their permeability, hydrophilicity, and porosity properties, and their separation efficiency was tested using the synthetic oil‐in‐water emulsion. The surface and cross‐sectional morphologies of membranes were observed by field emission scanning electron microscopy (FESEM). The experimental trials showed that modified NPs dispersed more uniformly in the structure of membranes and hydroxyl groups on the surface of NPs acted more effectively. Modification of NPs enhance the membrane performance in terms of permeate flux, hydrophilicity, and porosity. NPs modification improved the permeate flux about 46%. Oil rejection for all tested membranes was more than 98%, and modification of NPs did not reduce the rejection of membranes. The optimum concentration was obtained as 1 wt.% and 1.5 wt.% for SiO2 and SiO2‐g‐PMAA, respectively. Aggregation effect dominated at concentrations beyond the optimum values that decreased the permeate flux, consequently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call