Abstract
Abstract Novel aromatic poly(benzimidazole-amide)s, PBAs, have been synthesized by direct polycondensation of a new dicarboxylic acid, N-[3,5-bis(5-carboxylic acid-2-benzimidazole) phenyl]phthalimide (1), containing performed benzimidazole rings and a phthalimide pendent group with various aromatic diamines. The dicarboxylic acid was synthesized by reaction of 5-(N-phthalimide)isophthalic acid with 4-methyl-1,2-phenylenediamine in polyphosphoric acid, followed by its oxidation into relative dicarboxylic acid. To study the structure–property relationships of 1,3-bis(5-carboxylic acid-2-benzimidazole)benzene (2, as a reference) this compound was also synthesized. The chemical structure of 1 and 2 were confirmed by the spectroscopic methods and elemental analyses. The characterization of the polymers was performed with inherent viscosity measurements, solubility tests, FT-IR, Ultraviolet and 1H NMR spectroscopy and thermogravimetry. The polymers were obtained in quantitative yields with inherent viscosities between 0.53 and 0.91 dl g−1. The effects of the phthalimide pendent group on the polymer properties such as solubility and thermal behavior were investigated and compared with those of the corresponding unsubstituted poly(benzimidazole-amide)s. The modified poly(benzimidazole-amide)s showed enhanced solubilities in some solvents, such as m-cresol and pyridine, in comparison to the unmodified analogues. In addition, the incorporation of the pendent phthalimide groups in the poly(benzimidazole-amide)s backbone increased remarkably the thermal stability of the polymer. The glass transition temperature and 10% weight loss temperature of the poly(benzimidazole-amide)s were in range of 291–334 °C and 466–540 °C, respectively, in nitrogen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.