Abstract

Synthesis of a novel thermally stable mesoporous ceria-titania phase using a neutral templating route is reported. The as-made inorganic-template hybrid mesostructured matrix showed a broad low-angle XRD peak characteristic of mesoporous materials. Careful thermal treatment of the matrix allowed the subsequent densification (of the pore walls) of the inorganic component and removal of the organic component so that a high-quality mesoporous ceria-titania was formed as observed by TEM analysis. The calcined material showed the formation of fluorite type structure of CeO(2) but no crystalline titania phase was observed. The mesoporous structure remained even after high-temperature treatment. The material had high surface area after calcination up to the temperature of 973 K, with well-dispersed ceria and titania components and negligible bulk oxide formation (from XRD, UV-vis, and XPS analysis). These novel mesoporous ceria-titania materials showed high performance for the removal of volatile organic compound (toluene). The toluene removal performance was further enhanced for Pt impregnated mesoporous ceria-titania.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.