Abstract

Microcapsules with adequate performance are required for self-healing materials. Novel self-repairing microcapsules with better heat resistance and water resistance were prepared by introducing melamine to urea–formaldehyde resin as wall material. The as-synthesized microcapsules were studied by various characterizations techniques, including scanning electron microscope (SEM), optical microscope (OM), particle size analyzer (PSA), Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and contact angle meter. Spherical poly(urea–formaldehyde) microcapsules (mean size: 96 μm) and melamine modified poly(urea–formaldehyde) microcapsules (mean size: 46 μm, wall thickness: ∼3 μm) were obtained when the amount of melamine was 6–8 wt% and the amount of core materials was 75 wt%. After modified by melamine, the water-resistance of microcapsule is improved and contact angle increases from 43° to 50°. The heat resistance, solvent resistance, acid resistance and alkali resistance are improved because of triazine ring in melamine, which resulting in long storage time for microcapsule at room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.