Abstract

Recently, the demand for new renewable and sustainable polymers, as well as their use as precursors to produce energetic materials, has emerged as a popular and burgeoning area of study. In this study, novel energetic nitrogen-rich polymers based on the 1,3,5-triazine ring were synthesized utilizing standard techniques. Four monomers were created initially: 4,6-dichloro-N-(4-chlorophenyl)-1,3,5-triazine-2-amine (A), 1,1’-bis(4,6-dichloro-1,3,5-triazine-2-yl)-1 H,1’H-5,5’-bitetrazole (B), 2,4,6-trihydrazinyl-1,3,5-triazine (C), N-(4-chlorophenyl)-4,6-dihydrazinyl-1,3,5-triazin-2-amine (D) In the second step, seven novel polymers named CHTA, TBT, TBTH, CTBT, THT, CTC, and TCT were synthesized via polyaddition reactions with monomers. Infra-red spectroscopy was used to characterize the nitrogen-rich polymers that were formed (IR). TGA measurements were utilized to investigate the thermal stability of substances. In addition, SEM and 1HNMR were utilized to describe the compounds. The results of thermal analysis indicate that TBT, CTC, and TCT are less stable than other nitrogen-rich polymers. The reaction yield for synthesized energetic polymer were 73%, 92%, 67%, 80%, 84%, 72%and 74%for CHTA, TBT, TBTH, CTBT, THT, CTC and TCT respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call