Abstract

β-Chitin is a biopolymer principally found in shells of squid pen. It has the properties of biodegradability, biocompatibility, chemical inertness, wound healing, antibacterial and anti-inflammatory activities. Hydroxyapatite (HAp) is a natural inorganic component of bone and teeth and has osteoconductive property. In this work, β-chitin–HAp composite membranes were prepared by alternate soaking of β-chitin membranes in CaCl 2 (pH 7.4) and Na 2HPO 4 solutions for 2 h in each solution. After 1, 3 and 5 cycles of immersion, β-chitin membranes were characterized using the SEM, FT-IR, EDS and XRD analyses. The results showed the presence of apatite layer on surface of β-chitin membranes, and the amounts of size and deposition of apatite layers were increased with increasing number of immersion cycles. Human mesenchymal stem cells (hMSCs) were used for evaluation of the biocompatibility of pristine as well as composite membranes for tissue engineering applications. The presence of apatite layers on the surface of β-chitin membranes increased the cell attachment and spreading suggesting that β-chitin–HAp composite membranes can be used for tissue engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call