Abstract

In this paper, a series of porous nanohydroxyapatite/silk fibroin/chitosan (nHA/SF/CTS) scaffolds were successfully prepared using the freeze-drying method. The biomaterials were characterized by attenuated total reflection Fourier transform infrared spectroscopy, and mechanical testing and thermogravimetric analysis. Moreover, studies of porosity, pore size, swelling properties and in vitro degradation test were performed. Research has proved that micro-structure, porosity, water adsorption and compressive strength were greatly affected by the components’ concentration, in particular the content of silk fibroin. SEM observations showed that the scaffolds of nHA/SF/CTS are highly porous, with pore size in wide range from 25 to 300 µm which is suitable for cell growth. nHA/SF/CTS scaffolds have sufficient mechanical integrity to resist handling during implantation and in vivo loading. Both, the compressive modulus and compressive strength of the scaffold, decrease with the increase in silk fibroin content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call