Abstract

Thin-film composite (TFC) nanofiltration (NF) membranes were developed by terephthaloyl chloride (TPC) crosslinked the hydroxyl ended groups of hyperbranched polyester (HPE) on polyacrylonitrile (PAN) support. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) indicated that a thin layer of crosslinked HPE molecules were deposited on PAN porous membrane surface successfully. The preparation conditions were also optimized. The separation performance of PAN-HPE-TPC NF membranes are mainly related with the concentration of monomer in the aqueous phase rather than that in the organic phase. Water permeability and salts rejections of the membranes were measured. The flux and rejection of these NF membranes for Na2SO4 (1 g/L) reached 11.43 L/m2h and 96.5% under 0.6 MPa, respectively. At the same time, the nanofiltration properties were compared with other membranes prepared with hyperbranched polymers. All NF membranes prepared with hyperbranched polymers showed relative high permeate flux.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call