Abstract

Printing method for electronics elements fabrication has attractive advantages such as low material consumption, high speed fabrication, and low temperature process. The stable conductive ink is the most important factor for the fabrication of printed electronics elements with high resolution. These materials are widely used as fillers in conductive inks; metal particles, conductive polymers, and carbon materials. Among these materials, the carbon nanotubes (CNTs) are extremely attractive filler for printed electronics due to its superior electrical properties, extra high mechanical properties, and excellent chemical stability. In this research, nano-composites which are composed of multi wall carbon nanotubes (MWCNTs) and polyaniline core-shell type particles were synthesized and formulated into electrically conductive colloidal inks. The poly(acrylonitrile-co-itaconic acid-co-methylacrylate) nanoparticles were used as cores. And this core was coated with polyaniline. The surface treatments for MWCNTs were applied to make the stable nano-composites. The experimental conditions were optimized to achieve high miscibility between MWCNTs and polyaniline coated particles. Their structure and surface morphology of the nanocomposites were characterized by Scanning Electron Microscopy. And four point probe automatic resistivity meter was used to measure the conductivities of the nanocomposites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.