Abstract

Ester-based thermoplastic polyurethane (TPU) nanocomposites were prepared by melt blending at 190°C, using 3 wt% Cloisite 10A (organically modified montmorillonite clay) as the nanoscale reinforcement [TPU(C10A)]. The nanocomposites were subsequently melt-blended with polypropylene (PP) using maleic anhydride–grafted polypropylene (MA-g-PP) as a compatibilizer [in the ratio of 70/30-TPU/PP, 70/25/5-TPU/PP/MA-g-PP, 70/25/5-TPU (C10A)/PP/MA-g-PP]. Besides giving substantial increase in modulus, tensile strength, and other properties, organoclay reinforcement functions as a surface modifier for TPU hard segment resulting in improved dispersion. The morphology and other characteristics of the nanocomposite blends were investigated in terms of X-ray diffraction, fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, tensile properties, scanning electron microscopy, and atomic force microscopy. The results indicate that the ester-TPU(C10A)/PP/MA-g-PP exhibited better dispersion than other blend systems; abrasion resistance and water absorption resistance were also better for this system. POLYM. ENG. SCI., 50:1878–1886, 2010. © 2010 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.