Abstract

The nanocomposites of polythiophene and carboxylated multiwalled carbon nanotubes (MWCNTs) were synthesized by in-situ chemical oxidative polymerization method using anhydrous ferric chloride (FeCl3) as an oxidant. The MWCNTs functionalized and ultrasonicated to obtain uniform dispersion within the polythiophene matrix. Field emission scanning electron microscopy was used to characterize the morphology of the nanocomposite. X-Ray diffraction, Fourier Transform Infrared Spectroscopy, Raman spectroscopy, and thermogravimetric analysis were used to characterize the synthesized MWCNT-polythiophene nanocomposites. It was found that in-situ polymerized polythiophene layer matrix was formed on carboxylated MWCNT and there was uniform dispersion of MWCNTs within the polythiophene matrix with significant interaction between polythiophene and MWCNTs. The sensitivity response of the prepared MWCNT-polythiophene nanocomposite sensors was studied in using Ammonia gas. The synergistic effects of the polythiophene-coated MWCNTs improve the gas sensing properties. Results showed that the sensitivity increased with ammonia concentration and it is also affected by the MWCNT content in polythiophene matrix. Furthermore, the sensor in pellet form reported here is robust, cost effective, and relatively stable at room temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call