Abstract
Porous polymer monolithic columns were prepared by the direct free radical copolymerization of methacrylic acid and ethylene glycol dimethacrylate within the confines of a chromatographic column in the presence of toluene-dodecanol as a porogenic solvent. The separation characteristics of the monolithic columns were tested by a homologous series of xanthine derivatives, theophylline and caffeine. The effects of the polymerization mixture composition and polymerization condition, mobile phase composition, flow rate and temperature on the retention times and separation efficiencies were investigated. The results showed that the selection of correct porogenic solvents and appropriate polymerization conditions are crucial for the preparation of the monolithic stationary phases. The separation efficiency was only extremely weakly dependent on flow rate and temperatures. Hydrogen-bonding interaction played an important role in the retention and separation. Compared with conventional particle columns, the monolithic column exhibited good stability, ease of regeneration, high separation efficiency and fast analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.