Abstract

The atomic-level characterization of active sites is essential to understanding the mechanisms behind catalytic reactions. In this study, using scanning tunneling microscopy and X-ray photoelectron spectroscopy, we follow the morphological changes of a model Rh catalyst supported on Fe3O4(001) as a function of temperature and Rh coverage. We identify the preparation conditions leading to model catalysts containing homotopic or nearly homotopic Rh species bound as adatoms, substitutional octahedral sites within the Fe3O4(001), and nanoparticles. Adsorbates such as CO and CO2 are subsequently used to characterize the properties of different Rh sites. Using temperature-programmed desorption, we demonstrate that adatoms and nanoparticles exhibit high-temperature CO desorption (250–600 K). Strong binding on such sites further allows for CO oxidation to CO2 via the Mars–van Krevelen mechanism. In contrast, CO2 was found to interact weakly with all Rh sites. Differences in desorption temperature enable the use of CO and CO2 as titration methods for nanoparticles and Fe3O4(001), respectively. A small quantity of CO2 was found to be reduced to CO on Rh adatoms and small nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.