Abstract

Ni-P composite coatings were prepared on cellulose fiber surface via a simple electroless Ni-P approach. The metal-coated extent, dispersion extent of micro or nano cellulose fibers and crystalline structure of Ni-P composite coatings were investigated. The homogeneous hollow composite coatings and metal-coated extent of micro or nano cellulose fibers were improved with the increase in ultrasonic power, and the ideal composite coatings were obtained as ultrasonic up to 960 W. The metallization for cellulose fibers enhanced the dispersion extent of micro or nano cellulose fibers. A uniform coating, consisting of the hollow coating on cellulose fibers surface, could be obtained. At the same time, metallization did not damage the original structure and surface functional groups of cellulose fibers. The concentration of cellulose fibers and ultrasonic power had a direct influence on the metal-coated extent of cellulose fiber surface. The metal-coated extent, dispersion extent of micro or nano cellulose fibers and crystalline structure of Ni-P composite coatings exhibited excellent properties as the concentration of cellulose fibers and ultrasonic power were 2 g/L and 960 W, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call