Abstract

In the present study, combustion technique is adopted to study the impact of Mg2+ ion doping on ZnAI₂O₄ nanoparticles (NPs). L-arginine is used as a fuel component. The Mg2+ ions play a pivotal role in persuading various characteristics of ZnAI₂O₄ NPs. Various characterization technqiues such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), high resolution scanning electron microscopy (HR-SEM), diffuse reflectance spectroscopy (DRS), Thermo-gravimetric/differential thermal analysis (TG-DTA) and vibrating sample magnetometer (VSM) were carried out in order to synthesize the nanoparticles. Single phase cubic spinel structure of ZnAl₂O₄ (gahnite) formation was confirmed from the XRD characterization process of the nanoparticles. Estimated average crystallite size range of 11.85 nm to 19.02 nm was observed from Debye-Scherrer. Spherical morphology with uniform distributions was observed from HR-SEM characterization images. From the band gap studies, the attained band gap values were found to lie within 5.41 eV-4.66 eV range. The ZnAl₂O₄ and Mg:ZnAl₂O₄ NPs exhibited super-paramagnetic nature confirmed by magnetic measurements. The obtained results make ZnAl₂O ₄and Mg:ZnAl₂O₄ NPs appropriate for various optical, catalytic, energy and data storage applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call