Abstract

Abstract Hybrid nanogels that are both thermosensitive and superparamagnetic, and have good biocompatibility are expected to have applications in the biomedical field. In this article, a linearly thermosensitive magnetic microgel was prepared by a radical copolymerization reaction in aqueous dispersion. In this reaction, poly(ethylene glycol) diacrylate was used as a crosslinker, polyvinylpyrrolidone was used as a stabilizer, and 2-methoxyethyl acrylate, poly(ethylene glycol)methyl ether acrylate, and 2-(methacryloyloxy)ethyl acetoacetate were used as copolymer monomers. The thermosensitive magnetic microgel displays a linear volume phase transition in water upon heating over a wide range of temperatures. Transmission electron microscopy, scanning electron microscopy, and dynamic light scattering were used to characterize the morphology and dimensions of the thermosensitive magnetic microgel. This material is expected to be used in magnetically targeted drug delivery systems that require linear drug release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call