Abstract
Lithium-rich cathode materials Li1.2Ni0.13Co0.13Mn0.54O2 with (sample SF) and without (sample SP) formamide was synthesized by a spray-dry method. The crystalline structure and particle morphology of as-prepared materials were characterized by X-ray diffraction and scanning electron microscope. The specific surface area (SSA) of the Li1.2Ni0.13Co0.13Mn0.54O2 prepared from different routes was determined by a five-point Brunauer–Emmett–Teller (BET) method using N2 as absorbate gas. Being compared with the material synthesized without spray-drying process (sample CP), sample SP has much higher SSA. The additive formamide is helpful to form regular and solid precursor particles in spray-drying process, which results in a slightly aggregation of grains and reduction of SSA for sample SF. The electrochemical activities of the materials are closely related to their morphology and SSA. In the voltage range of 2–4.8 V at 25 °C, sample SP present a discharge capacity of 257 mAh g−1 at 0.1 C rate and 170 mAh g−1 at 1 C rate. The sample CP delivered only 136 mAh g−1 when discharged at 1 C rate. The elevated specific capacity and rate capability are attributed to smaller primary particle and higher SSA. Both cycle performance and rate capability of Li1.2Ni0.13Co0.13Mn0.54O2 were improved when formamide was used in spray-dry process. Discharge capacity of SF is 140.5 mAh g−1 at 2 C rate, and that of SP is 132.3 mAh g−1. Overlarge SSA of SP may provoke serious side reaction, so that its electrochemical performance was deteriorated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.