Abstract

Lead dioxide electrodes with three-dimensional porous titanium as substrate (3D-Ti/PbO2) were prepared by galvanostatic electrodeposition. The structure, morphology and electrochemical performances of 3D-Ti/PbO2 were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), cyclic voltammetry and galvanostatic charge-discharge techniques. The electrochemical performances of 3D-Ti/PbO2 were optimized by adjusting the applied deposition current density. Results reveal that the 3D-Ti/PbO2 prepared at 1mAcm−2 had nanoparticles on its surface with abundant crystal orientations. It had a high capacity of 132 mAh g−1 with an active material utilization of 57% at discharge current density of 0.9 A g−1. With the same condition, the lead dioxide electrode with planar titanium substrate (Ti/PbO2) only had a capacity of 20.8 mAh g−1. The high electrochemical active surface area and small charge transfer resistance resulted in the high capacity of 3D-Ti/PbO2. The possible factors, which affected the electrochemical performances of 3D-Ti/PbO2, were interpreted in detail with voltammetric charge analysis and electrochemical impedance spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.