Abstract
Keratin-based drug carriers have attracted great interest due to their intrinsic biocompatibility and tumor micro-environmental responsiveness. In the study, keratin was first extracted from human hair with reduction method. The reduced keratin was successively conjugated with poly(ethylene glycol) (PEG) via thiol Michael addition reaction and iodoacetic acid (IAA) via substitution reaction to impart both physical stability and acidity responsiveness. Subsequently, the conjugated keratin was fabricated into micelles and loaded with doxorubicin (DOX) by self-assembly. The micelles exhibited pH, glutathione (GSH) and enzyme (trypsin) triple-responsiveness as well as charge reversibility under the simulated tumor microenvironment. These drug-loaded micelles exhibited high toxicity against A549 cells with low side effect on normal cells. Furthermore, anticancer efficacy in vivo revealed DOX-loaded micelles presented higher therapeutic efficiency than free DOX. Moreover, these micelles were stable under physiological conditions, and could be internalized through endocytosis without hemolysis. Based on the results, the drug-loaded micelles were satisfactory candidates for drug carriers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.