Abstract
The purpose of this study was to fabricate composites consisting of three interpenetrating networks: tricalcium phosphate (TCP), hydroxyapatite (HA), and poly(dl-lactide-co-glycolide) (PLGA). The porous TCP network was first produced by coating a polyurethane (PU) foam with hydrolysable alpha-TCP slurry. The HA network was derived from a calcium phosphate cement (CPC) filled in the porous TCP network. The remaining open pore network in the HA/TCP composite was further infiltrated with a PLGA network. The three sets of spatially continuous networks would have different biodegradation rates and thus bone tissue would grow towards the fastest biodegrading network while the remaining networks still maintaining their geometrical shape and carrying the physiological load for the tissue ingrowth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.