Abstract

An ICPC with high structure recoverability and paste stability was successfully developed directly incorporating PEG-6000 into the liquid phase of CPC. The rheological behavior of ICPC was investigated with rheometric scientific ARES902-30004 controlled strain rheometer. Novel approaches of flow rate, shear thinning index (SI), shear stress slowdown ( Δ τ) and thixotropy loop area have been applied to assess the injectability and structure recoverability of the ICPC paste. The addition of PEG-6000 to ICPC resulted in a thixotrophic structure with shortened setting time, slightly increased viscosity, larger thixotropic hysteresis loop area and lower Δ τ, with the improvement largely dependent on the PEG-6000 content. With acceptable injectability and shortened setting time, ICPC (1%) showed the lowest Δ τ and the highest SI, endowing the paste good structure recoverability and paste stability. The ICPC (1%) was bioactive and facilitated cell attachment and proliferation. The optimized ICPC (1%) paste with a relatively good structure stability and paste stability may serve as a good candidate for tooth root-canal fillings and percutaneous vertebroplasty in microinvasive surgery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call